Applications of genetic and breeding technologies and lessons from Australia

Wayne Pitchford

Driver Direction Speed

Efficiency and cow weight for 3 market endpoints

RESEARCH CENTRE

Days to Calving key trait

DAVIES LIVESTOCK

RESEARCH CENTRE

Beef CRC core results

Heritability	Brahman	Composite
Age at puberty	57	52
Post-partum anoestrus interval	52	25

Lactation Status

Heritability DC2+_Dry = 0.22DC2+_Wet = 0.17

Genetic correlation = -0.10

Breeding value correlation = 0.32

Correlated male traits

- Scrotal circumference
- Sperm defects (percent normal, vacuoles)

Changing body composition

Kenya

Heritability (diagonal), genetic (below) and environmental (above) correlations

	Weight	Rank	5 score	3 score
Weight	0.50	-0.87	-0.71	-0.58
Rank	-0.98	0.55	0.64	0.71
5 score	-0.99	0.99	0.50	0.81
3 score	-0.99	0.99	0.97	0.44

It is important to use experience of smallholders If animals can be accurately ranked or scored, these can still be highly heritable

Using scores can identify major genes

Genomics can be used to describe breed composition – example from tropical composite cattle

Kerala

- Genotype by Environment interaction
- Highlands $h^2=0.28$, Lowlands $h^2=0.13$
- Genetic correlation $r_G=0.07$

PCA-based Population Structure

Genomics for multi-breed evaluation

- Include accounting for heterosis and managing inbreeding
- Embrace crossbreeding which has occurred but don't blindly keep doing it
- Biggest is not always best
- Value highly the adaptation and fertility of local cattle
- Develop a good system of measurement

Buying cattle from Australia

- Importance of composites for all sectors of market
- Sufficient tropical adaption
- Improved maternal performance
- Improved early growth and meat quality
- Faster feedlot growth in destination country

Maximising genetic gain

- For a breeding objective of weaning 5 calves
- Accuracy of index with direct measurement low (0.35)
- Genomic testing builds accuracy (double gain)
- Embryo transfer (multiple ovulation or in vitro production) builds speed of genetic gain (double gain)
- Artificial insemination is useful for disseminating superior genetics either into or out of nucleus

Key messages for Vietnam

- Develop a breeding objective (trait emphasis)
 Likely including adaption, temperament, fertility, growth, muscle, quality
- Develop a breeding nucleus and performance recording system
- Capture data from the field
 - Southern and northern, productivity and likeability traits
- Develop a system for estimating breeding values (+genomics)
- Import genetics aligned to objective
- Select animals on data and make gains
- Widely disseminate superior stock (AI or village cooperatives)

