

How can genomic tools support breeding and genetic improvement in Vietnam?

Professor Ben Hayes Centre Director, Animal Science Queensland Alliance for Agriculture and Food Innovation

Key drivers

- Fertility
 - maximise kg beef or lamb/cow or ewe
 - reduce methane/kg beef or lamb
 - Meat Quality
 - High value markets
 - Methane
 - Carbon footprint, access to markets
 - Adaptation

Genomic selection

>20 million animals genotyped

Livestock genomics

Beef – uptake of genotyping

4

Dairy – Impact

QAAFI Guarda Aliance for Agriculture and Food Innovation

Challenges for beef

THE UNIVERSITY OF QUEENSLAND

- Large number of breeds, crossbreds, two sub-species (*Bos taurus* and *Bos indicus*)
- Traits not routinely recorded
- Extensive conditions
- Northern Genomics project as an example

Northern Genomics Project

- 60 collaborator herds from across northern Australia
- 29,391 genotyped and trait recorded heifers

- CLscore cycling/not cycling at ~600 d of age (Heifer puberty)
- Genotypes: 35-50K TropBeef SNP Array \rightarrow imputed 709K SNP

Trait	Number	Heritability
Weight	26,724	0.29
Hip height	26,724	0.39
Body condition score	26,724	0.22

Trait	Number	Heritability
Weight	26,724	0.29
Hip height	26,724	0.39
Body condition score	26.724	0.22
Heifer Puberty	29,391	0.22
Pregnant 4 months after calving	8,477	0.11

THE UNIVERSITY OF QUEENSLAND

Trait	Number	Heritability	The second second
Weight	26,724	0.29	
Hip height	26,724	0.39	
Body condition score	26,724	0.22	
Heifer Puberty	29,391	0.22	
Pregnant 4 months after calving	8,477	0.11	1508
Temperament	3,234	0.37	18 CC
Tick score	2,094	0.33	
Buffalo fly lesion score	15,927	0.14	

Herd Profiles

- Benchmark my herd against 60 herds across Northern Australia
- For fertility, growth, tick and fly resistance, temperament

• Guide bull buying decisions – which traits to emphasise?

Genomic Breeding Value (GBV) from the Northern Genomics Project

- Collection of records in commercial herds enables GBV selection for fertility in multi-breed, composite, crossbred cattle
- Northern Genomics GBV useful for selecting bull teams, culling heifers
- Validated in a range of data sets, including for lifetime production
- Based on DNA only (from DNA + phenotypes)

Hayes BJ, et al. Multi-breed genomic evaluation for tropical beef cattle when no pedigree information is available. Genet Sel Evol. 2023 Oct 16;55(1):71.

.

Using small herd sizes as a reference?

Costilla et al. Developing flexible models for genetic evaluations in smallholder crossbred dairy farms. J Dairy Sci. 2023 Sep 5:S0022-0302(23)00582-9

vernment.

CRICOS code 00025B

1

Conclusion

- Good genomic models now available to develop genomic tools for multi-breed/multi sub-species populations
- Accurate GBV for selection even without pedigree
- Use genomics to accelerate genetic gain by selecting and breeding from animals as early as possible
- Even relatively small herds can be used as a reference

With thanks....

Shannon Speight, Geoffry, James Copley, Fordyce, Neogen Australasia, QDAF staff, Elsie Dodd, and the Northern Genomics collaborating herds, Roy Costilla and BAIF team

